Fast TV Regularization for 2D Maximum Penalized Likelihood Estimation
نویسندگان
چکیده
Total Variation-based regularization, well established for image processing applications such as denoising, was recently introduced for Maximum Penalized Likelihood Estimation (MPLE) as an effective way to estimate nonsmooth probability densities. While the estimates show promise for a variety of applications, the nonlinearity of the regularization leads to computational challenges, especially in multidimensions. In this article we present a numerical methodology, based upon the Split Bregman L1 minimization technique, that overcomes these challenges, allowing for the fast and accurate computation of 2D TV-based MPLE. We test the methodology with several examples, including V-fold cross-validation with large 2D datasets, and highlight the application of TV-based MPLE to point process crime modeling. The proposed algorithm is implemented as the Matlab function TVMPLE. The Matlab (mex) code and datasets for examples and simulations are available as online supplements.
منابع مشابه
Copula Density Estimation by Total Variation Penalized Likelihood
A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-M...
متن کاملCopula Density Estimation by Total Variation Penalized Likelihood with Linear Equality Constraints
A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-M...
متن کاملIMPROVING GAUSSIAN MIXTURE DENSITY ESTIMATES 1 Averaging
We apply the idea of averaging ensembles of estimators to probability density estimation. In particular we use Gaussian mixture models which are important components in many neural network applications. One variant of averaging is Breiman's \bagging", which recently produced impressive results in classiication tasks. We investigate the performance of averaging using three data sets. For compari...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کامل